Chapter 11

Emergency Destruct Operations

When faced with the possibility of capture by the enemy, an ASA or ATP may be called upon to conduct ED operations on part or all of its stocks. This chapter discusses the reasons for emergency munitions destruction and provides guidance in aspects of planning and conducting safe operations. Also, it describes methods of destruction and elements of required training.

OPERATIONS OBJECTIVES

11-1. Emergency destruction of munitions is conducted for one of two reasons. The first is to prevent enemy use. The second is to prevent disclosure of information about classified munitions. The object of ED is to render munitions inoperable, destroy munitions and documents of value to the enemy, and render what is left too hazardous to use. By reducing the stockpile as much as possible, units ensure that the least amount of munitions is destroyed. Quantities can be reduced in several ways. One is to move as much of the munitions as possible to a safe location. Another is to issue excess amounts to using units.

AUTHORIZATION TO DESTROY

11-2. The authority to destroy munitions must be established in command operating procedures. The applicable OPLAN or SOP must specify who in the chain of command is authorized to order the ED of ASA or ATP stocks. Only divisional or higher level commanders have the authority to order destruction of munitions. The commander may delegate this authority to subordinate commanders when the situation demands. Also, the command may dictate when and how to conduct ASA or ATP ED, including the types of items authorized for destruction and the destruction methods.

11-3. The decision to destroy, the method to be used, and the items to be destroyed all depend on factors involving command policy and the logistical and tactical situation. Some of the more important things to consider include—

- Tactical situation.
- Location of the ASA or ATP.
- Amount of ammunition and the time required to destroy the ASA or ATP.
- Security classification of the munitions.
- Available materiel and trained personnel.
- Safety considerations.

These factors are discussed in the paragraphs that follow. Also, added precautions must be taken when depleted uranium munitions or armor must be destroyed (see TB 9-1300-278).

TACTICAL SITUATION

11-4. The current tactical situation provides input to the decision-making process. The various ED methods require different setup and execution times. Also, the different methods provide different possibilities for complete destruction. With more time available, more complete destruction methods can be used. If time allows, the decision to authorize ED must be made at a higher command level. However, the senior person at the ASA or ATP may be required to authorize ED to prevent enemy capture and use.

ASA OR ATP LOCATION

11-5. Where the ASA or ATP is located has a bearing on which method of destruction is used. If an ASA or ATP is near a populated area, demolition may not be practical. On the other hand, if the destroyed ASA or ATP would create an obstacle to oncoming enemy forces, demolition would be useful.

AMOUNT OF AMMUNITION/TIME REQUIRED

11-6. The amount of demolition resources and the time required to destroy an ammunition stockpile are directly related to the amount of ammunition to be destroyed and its degree of dispersion. The quickest ED method is by fire support. An ASA or ATP can be destroyed with an artillery or air attack. ED by burning or demolition requires a lot of preparation time. Burning is faster because demolition requires setting up and priming explosive charges and setting up an initiation system.

11-7. A tradeoff may need to be made. With an artillery strike, the munitions may not all be destroyed. By burning or explosive demolition, the possibility of complete destruction of the ASA or ATP is much greater.

MUNITIONS SECURITY CLASSIFICATION

11-8. Classified munitions must be evacuated if at all possible. If not possible, classified munitions will be the first to be destroyed. To ensure complete destruction, classified munitions are destroyed by the most reliable demolition method.

AVAILABLE MATERIEL AND TRAINED PERSONNEL

11-9. If the ASA or ATP has no demolition or flammable materiel, destruction methods are limited. Also, demolition materiel may be more critical for offensive purposes than for ASA or ATP ED. In this case, destruction must be carried out by burning or other available methods. Only personnel trained in ED operations and thoroughly familiar with the unit ED SOP should be permitted to conduct demolition operations.

PLANNING

11-10. Planning for ED must start immediately. It is difficult to establish SOPs because tactical and logistical situations in each combat zone vary. However, the methods of destruction are basic and flexible enough to serve as SOPs in combat emergencies. The ED plan must be either an annex to the unit SOP or a separate SOP. To ensure the plan is complete and feasible,

staff it through technically qualified personnel and division, corps, or theater staff elements (i.e., EOD, the safety office, G3, and G4).

11-11. The division, corps, and theater staff agencies must thoroughly prepare for ED. Plans must address destruction priorities and procedures.

11-12. When establishing an ASA or ATP, the DAO and MMCs must plan to push ED materiel to the site. ED materiel requirements can be based on the expected daily push to the ATP (RSR for supported elements) or on the stockage objective for the ASA. To support any increased munitions flow, the MMCs or DAO must ensure that additional ED materiel is pushed to the ASA or ATP. ED materiel should be kept on hand at all times during normal operations, relocations, or evacuations. ASA and ATP personnel must be trained in ED methods and procedures. All personnel must be thoroughly familiar with the unit ED SOP and methods of destruction.

PRIORITIES

11-13. Priorities for ED are based on the tactical situation and the types of munitions stored at the ASA or ATP. ED priorities must be established in OPLANs and SOPs. Priorities may change based on the logistical and tactical situation. Munitions vital to the defense of the unit will not be destroyed. See Table 11-1 below for a suggested priority list for munitions ED.

PRIORITY

1 Classified and special (chemical) munitions; associated manuals, records, reports, test sets, and equipment.

2 Munitions that can be used in immediate retaliation and deployed without a weapons system (e.g., grenades, land mines, small rockets [AT4]); munitions for which the enemy has weapons system capability.

3 Casualty-producing munitions (e.g., HE, antipersonnel) not included in priorities 1 and 2.

4 Noncasualty-producing and pyrotechnic munitions (e.g., signal, illuminating projectiles).

Table 11-1. Suggested Priority List for ED of Munitions

SAFETY

- 11-14. Observance of safety precautions is mandatory, regardless of the ED method used or the urgency of the situation. Only trained, experienced personnel may conduct ED procedures. Safety requirements determine the number of personnel engaged in ED operations. Safety considerations include the amount and type of munitions being destroyed and the size of the ASA or ATP. A minimum of two personnel must be present during all operations.
- 11-15. Tactical situation permitting, coordination with and warning of those units endangered by the ED operation must be accomplished to prevent casualties.
- 11-16. No matter which ED method is used, special care must be taken when destroying ICM, rockets, missiles, and ejection-type munitions. ICM and

ejection-type munitions may expel their payload when detonated or burned. These submunitions must be treated as UXO. Rockets and missiles will be pointed away from friendly troops since they could be set off by accident during the ED process and propelled in the directions they were pointed.

11-17. When using electrical or remote firing devices during ED operations, a minimum distance of 400 meters must be maintained from radio transmitters.

BURNING

11-18. The type and quantity of munitions being burned determines the radius of the danger area around the burning site. A minimum 1,000-meter (0.6-mile) safe area must be established when surrounding units and personnel are warned and under protective cover.

DEMOLITION

11-19. The type and quantity of munitions being destroyed, the fragmentation hazard, and the protective cover provided to personnel in the area determine the radius of the danger area surrounding the destruction of munitions by demolition. The information in Table 11-2 is based on ballistic data and field experience and should be used as a guide. If there is any doubt about an item, the distance will be increased for reasons of safety. Distance may be adjusted based on the tactical situation, terrain, and available protective cover for exposed personnel.

METHODS OF DESTRUCTION

11-20. Choose methods of destruction that cause such damage that the munitions will not be restorable to a usable condition within the combat zone by repair or by cannibalization. Destruction should be planned to impede enemy troop movements without creating hazards to friendly troops.

11-21. The methods for destroying munitions listed below may be used either singly or in combination. The actual method or methods used in a given tactical situation depend on time, personnel, type of munitions, and available means of ED. These methods include firing, concealment, burning, and demolition, and are discussed below.

FIRING/FIRE SUPPORT

11-22. At the using unit, firing the munitions into enemy-held territory is the simplest and most effective way of preventing enemy capture. Another ED method is using fire support. An ASA or ATP can be effectively destroyed if it is shelled or bombed. This method is particularly useful to ensure complete destruction after burning or demolition. Also, it is quite useful as a primary means of ED when there is no time to evacuate or set up any other ED method. An advantage of ED by fire support is that it can be used even after the ATP has been occupied by enemy forces.

CONCEALMENT

11-23. Concealment is the least desirable ED method. It is viable when the lack of time precludes using other methods. If the terrain provides adequate

covering, or if bodies of water are available for dumping munitions, concealment may be an excellent ED method. Puncture hermetically sealed metal cans before throwing them into water if time permits. Concealment of components such as fuzes can prevent or at least delay use by the enemy.

BURNING

11-24. Burning is less time-consuming than demolition. However, it is not recommended for all types of munitions because it rarely accomplishes total destruction. When time is a major consideration, burning may be used to destroy boxed munitions. When burning, munitions must be surrounded with combustible/flammable materiel. To guarantee an extremely brisk fire, diesel fuel, gasoline, paint thinner, or other suitable combustible or flammable liquid should be used

Table 11-2. Minimum Safe Evacuation
Distance (in Meters) for Demolition Operations

Explosive Weight (pounds)	Evacuation Distance (meters)
27 and less	300
30	310
35	330
40	350
45	360
50	375
100	475
150	550
200	600
250	625
300	675
400	725
500	800

NOTES:

1—When using this table, Pounds of Explosive equals the total NEW of the munitions being destroyed plus the demolition materiel being used.

Example: 3 each Projectile 155mm HE, ADAM, D501 (NEW=1.8885x3=5.6655 NEW), 2 each demolition charge blocks, M112 (NEW=1.3x2=2.6 NEW), totaled 5.6655+2.6=8.2655 Total NEW, minimum safe evacuation distance is 300 meters.

2—When the munitions NEW is unknown, a general rule for estimating the amount of explosives is as follows: Assume that 50 percent of the total munitions weight equals the NEW.

3—When the NEW exceeds 500 lbs, use the formula below: $100 \times 3 \sqrt{\text{pounds of explosives.}}$

11-25. For maximum destruction, munitions-laden trailers should be pulled close together. Fuel, wood, paper, scrap boxes, propellant charges, or any

combustible materiel can be used for burning. Fuel is especially useful. Fuel-soaked munitions boxes are excellent for ensuring a fire strong enough to destroy munitions.

11-26. Combustible materiel will be placed under and over the munitions to be destroyed. An initiation train of combustible materiel can be used to ignite the fire; it must be 8 meters (26 feet) in length, long enough to allow soldiers to evacuate to a safe area. If time fuse is used as the initiation train, enough fuse must be used based on the burn rate to permit evacuation to a safe area. See FM 5-250 for more information. An alternate initiation method is to shoot a full fuel can with an incendiary bullet. If it becomes necessary to use gasoline or other highly volatile, flammable liquid, extreme caution must be taken to prevent premature ignition. For greater safety, ignition should be made by electrical means or by a remote-firing device.

DEMOLITION

11-27. The way in which a demolition charge is placed can make the difference between minor damage and complete destruction. For this reason, ED demolition teams must be trained on basic demolition procedures and on all available firing systems (see FM 5-250). Demolition material can be saved when planning ED operations by using HE-filled munitions in conjunction with demolition charges.

11-28. ED demolition teams must understand how and where to place demolition charges on different munitions to achieve complete destruction or to make the item unusable by the enemy. Demolition teams must be familiar with the preferred procedures for destruction of munitions in applicable TM 43-0002-series manuals.

11-29. Placements of demolition charges vary for different types of munitions. Also, placement of the charge may be different for items while in shipping and storage configurations versus when they are removed from the containers.

TRAINING

11-30. Rehearsal of responsible personnel in all phases of destruction is mandatory with special emphasis on training in demolition techniques. The training program should also include instruction in selecting sites, blocking communication routes, and impeding enemy movement.

11-31. Demolition explosives afford an effective means of destroying munitions to prevent enemy use. Demolition personnel must be familiar with pertinent provisions of DA Pam 385-64, FM 5-250, TMs 9-1375-200/2 and 9-1375-213-12, and TM 43-0002-series manuals.

11-32. Local EOD units can be contacted to provide technical assistance during hands-on training sessions and to assist in developing ED SOPs. The munitions unit commander must provide training munitions for all hands-on sessions. The STRAC manual provides the munitions allocations for demolitions training.

SUMMARY

11-33. The authority for ED, whether direct or delegated, must be identified in the appropriate OPLAN and SOP. The decision to destroy munitions is based on safety, logistical, and tactical considerations that may have implications beyond what appears to be an imminent enemy threat. ED operations should be considered as an option of last resort and should always receive planning and safety emphasis.